1. Simulating charge, spin, and orbital ordering: application to Jahn-Teller distortions in layered transition-metal oxides.
    M.D. Radin and A. Van der Ven (2017). Chem. Mater., in press.

  2. Ion Pairing and Diffusion in Magnesium Electrolytes Based on Magnesium Borohydride.
    D. Samuel, C. Steinhauser, J.G. Smith, A. Kaufman, M.D. Radin, J. Naruse, H. Hiramatsu, and D.J. Siegel (2017). Chem. Mater., in press. DOI:10.1021/acsami.7b15547.

  3. Role of crystal symmetry in the reversibility of stacking-sequence changes in layered intercalation electrodes.
    M.D. Radin, J. Alvarado, Y. Shirley Meng, and A. Van der Ven (2017). Nano Lett. 17, 7789–7795. DOI:10.1021/acs.nanolett.7b03989.

  4. Narrowing the Gap Between Theoretical and Practical Capacities in Li-ion Layered Oxide Cathode Materials.
    M.D. Radin, S. Hy, M. Sina, C. Fang, H. Liu, J. Vinckeviciute, M. Zhang, M.S. Whittingham, Y.S. Meng, A. Van der Ven (2017). Adv. Energy Mater. 160288. DOI:10.1002/aenm.201602888.

  5. Stacking-sequence changes and Na ordering in layered intercalation materials.
    J. Vinckeviciute, M.D. Radin, and A. Van der Ven (2016). Chem. Mater. 28, 8640-8650. DOI:10.1021/acs.chemmater.6b03609.

  6. Stability of Prismatic and Octahedral Coordination in Layered Oxides and Sulfides Intercalated with Alkali and Alkaline-Earth Metals.
    M.D. Radin, and A. Van der Ven (2016). Chem. Mater. 28, 7898-7904. DOI:10.1021/acs.chemmater.6b03454.

  7. Identifying the Distribution of Al3+ in LiNi0.8Co0.15Al0.05O2
    N.M. Trease, I.D. Seymour, M.D. Radin et al. (2016). Chem. Mater. 28, 8170-8180. DOI:10.1021/acs.chemmater.6b02797.

  8. Impact of Space-Charge Layers on Sudden Death in Li/O2 Batteries.
    M.D. Radin, and C.W. Monroe, and D.J. Siegel (2015). J. Phys. Chem. Lett. 6, 3017-3022. DOI:10.1021/acs.jpclett.5b01015.

  9. Capacitive charge storage at an electrified interface investigated via direct first-principles simulations.
    M.D. Radin, T. Ogitsu, J. Biener, M. Otani, and B.C. Wood (2015). Phys. Rev. B 91, 125415. DOI:10.1103/PhysRevB.91.125415.

  10. Surface-Mediated Solvent Decomposition in Li–Air Batteries: Impact of Peroxide and Superoxide Surface Terminations.
    N. Kumar, M.D. Radin, B.C. Wood, T. Ogitsu, and D.J. Siegel (2015). J. Phys. Chem. C 119, 9050-9060. DOI:10.1021/acs.jpcc.5b00256.

  11. Non-aqueous metal-oxygen batteries: past, present, and future.
    M.D. Radin and D.J. Siegel (2015). In Rechargeable Batteries: Materials, Technologies and New Trends, Springer. DOI:10.1007/978-3-319-15458-9_18.

  12. How dopants can enhance charge transport in Li2O2.
    M.D. Radin, C.W. Monroe, and D.J. Siegel (2014). Chem. Mater. 27, 839–847. DOI:10.1021/cm503874c.

  13. First-principles and continuum modeling of charge transport in Li-O2 batteries.
    M.D. Radin (2014). Dissertation, University of Michigan, Ann Arbor.

  14. Enhanced charge transport in amorphous Li2O2.
    F. Tian, M.D. Radin, & D.J. Siegel (2014). Chem. Mater. 26, 2952-2959. DOI:10.1021/cm5007372.

  15. Thermophysical properties of LiFePO4 cathodes with carbonized pitch coatings and organic binders: Experiments and first-principles modeling.
    J. Nanda, S.K. Martha, W.D. Porter, H. Wang, N.J. Dudney, M.D. Radin, D.J. Siegel (2014). J. Power Sources 251, 8-13. DOI:10.1016/j.jpowsour.2013.11.022.

  16. Charge transport in lithium peroxide: Relevance for rechargeable metal-air batteries.
    M.D. Radin & D.J. Siegel (2013). Energy Environ. Sci. 6, 2370-2379. DOI:10.1039/c3ee41632a.

  17. Electronic structure of Li2O2 {0001} surfaces.
    M.D. Radin, F. Tian, & D.J. Siegel (2012). J. Mater. Sci. 47, 7564-7570. DOI:10.1007/s10853-012-6552-6.

  18. Lithium Peroxide Surfaces Are Metallic, While Lithium Oxide Surfaces Are Not.
    M.D. Radin, J.F. Rodriguez, F. Tian, & D.J. Siegel (2012). J. Am. Chem. Soc. 134, 1093-1103. DOI:10.1021/ja208944x.

  19. A conceptual design for the Thirty Meter Telescope alignment and phasing system.
    M. Troy et al. (2008). Proc. SPIE 7012. DOI:10.1117/12.788560.