1. Stacking-sequence changes and Na ordering in layered intercalation materials.
    J. Vinckeviciute, M.D. Radin, and A. Van der Ven (2016). Chem. Mater. 28, 8640-8650. DOI:10.1021/acs.chemmater.6b03609.

  2. Stability of Prismatic and Octahedral Coordination in Layered Oxides and Sulfides Intercalated with Alkali and Alkaline-Earth Metals.
    M.D. Radin, and A. Van der Ven (2016). Chem. Mater. 28, 7898-7904. DOI:10.1021/acs.chemmater.6b03454.

  3. Identifying the Distribution of Al3+ in LiNi0.8Co0.15Al0.05O2
    N.M. Trease, I.D. Seymour, M.D. Radin et al. (2016). Chem. Mater. 28, 8170-8180. DOI:10.1021/acs.chemmater.6b02797.

  4. Impact of Space-Charge Layers on Sudden Death in Li/O2 Batteries.
    M.D. Radin, and C.W. Monroe, and D.J. Siegel (2015). J. Phys. Chem. Lett. 6, 3017-3022. DOI:10.1021/acs.jpclett.5b01015.

  5. Capacitive charge storage at an electrified interface investigated via direct first-principles simulations.
    M.D. Radin, T. Ogitsu, J. Biener, M. Otani, and B.C. Wood (2015). Phys. Rev. B 91, 125415. DOI:10.1103/PhysRevB.91.125415.

  6. Surface-Mediated Solvent Decomposition in Li–Air Batteries: Impact of Peroxide and Superoxide Surface Terminations.
    N. Kumar, M.D. Radin, B.C. Wood, T. Ogitsu, and D.J. Siegel (2015). J. Phys. Chem. C 119, 9050-9060. DOI:10.1021/acs.jpcc.5b00256.

  7. Non-aqueous metal-oxygen batteries: past, present, and future.
    M.D. Radin and D.J. Siegel (2015). In Rechargeable Batteries: Materials, Technologies and New Trends, Springer. DOI:10.1007/978-3-319-15458-9_18.

  8. How dopants can enhance charge transport in Li2O2.
    M.D. Radin, C.W. Monroe, and D.J. Siegel (2014). Chem. Mater. 27, 839–847. DOI:10.1021/cm503874c.

  9. First-principles and continuum modeling of charge transport in Li-O2 batteries.
    M.D. Radin (2014). Dissertation, University of Michigan, Ann Arbor.

  10. Enhanced charge transport in amorphous Li2O2.
    F. Tian, M.D. Radin, & D.J. Siegel (2014). Chem. Mater. 26, 2952-2959. DOI:10.1021/cm5007372.

  11. Thermophysical properties of LiFePO4 cathodes with carbonized pitch coatings and organic binders: Experiments and first-principles modeling.
    J. Nanda, S.K. Martha, W.D. Porter, H. Wang, N.J. Dudney, M.D. Radin, D.J. Siegel (2014). J. Power Sources 251, 8-13. DOI:10.1016/j.jpowsour.2013.11.022.

  12. Charge transport in lithium peroxide: Relevance for rechargeable metal-air batteries.
    M.D. Radin & D.J. Siegel (2013). Energy Environ. Sci. 6, 2370-2379. DOI:10.1039/c3ee41632a.

  13. Electronic structure of Li2O2 {0001} surfaces.
    M.D. Radin, F. Tian, & D.J. Siegel (2012). J. Mater. Sci. 47, 7564-7570. DOI:10.1007/s10853-012-6552-6.

  14. Lithium Peroxide Surfaces Are Metallic, While Lithium Oxide Surfaces Are Not.
    M.D. Radin, J.F. Rodriguez, F. Tian, & D.J. Siegel (2012). J. Am. Chem. Soc. 134, 1093-1103. DOI:10.1021/ja208944x.

  15. A conceptual design for the Thirty Meter Telescope alignment and phasing system.
    M. Troy et al. (2008). Proc. SPIE 7012. DOI:10.1117/12.788560.